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Abstract. Paintings-from-polygons is an optimization problem in which
the objective is to approximate a target bitmap by optimally arranging
a fixed number of semi-opaque colored polygons. In a recent report, two
optimization algorithms showed strong performance on the task, but the
third, simulated annealing, failed miserably. The authors conjectured its
poor performance to be due to the specific cooling schedule used.
In this study, we use the same problem instances but parameterize simu-
lated annealing with eight new cooling schedules known from literature:
Geman & Geman with different c-parameter settings, geometric, linear,
cosine, linear reheat, sigmoid, and staircase. We find that the previous
conjecture was right: the performance of simulated annealing on this
problem critically relies on its cooling schedule, and can be quite succes-
ful once parameterized properly. Moreover, we find a consistent ‘perfor-
mance hierarchy’ in which most of the cooling schedules’ performance
appears related to their average temperatures only.
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1 Introduction

As a discipline, computational creativity has flourished in recent history. Sub-
jects such as casual creation, photo quality classification, music genre detection,
evolutionary architecture and visual imagery have gone through substantial de-
velopment in the past decade [11][6][14][19][20]. Many of these are in some way
related to optimization algorithms such as hillclimbing, plant propagation, sim-
ulated annealing or genetic algorithms, which have all proven successful in both
theoretical and practical settings [18][25][29][12].

Being located on the intersection of computational creativity and algorith-
mic optimization, the paintings-from-polygons (PFP) problem’s objective is to
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Fig. 1: The choice of cooling schedule greatly influences the performance of sim-
ulated annealing on paintings-from-polygons. Top to bottom: linear reheat, Ge-
man & Geman (c=1), sigmoidal, and geometric cooling schedules; the fifth box
shows the MSE for the algorithmic approximation directly above it. All con-
stellations contain 1000 vertices in 250 polygons, and completed a run of 106

iterations (eq.: evaluations). A video clip of the process is publicly available[1].

approximate a given target bitmap by arranging a fixed number of semi-opaque
colored polygons. On initialization, the polygon constellation’s properties are
assigned random values, but the numbers of polygon and vertices are fixed (to
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250 and 1000 in this study) throughout an experiment [22]. From there, heuristic
algorithms can change a polygon’s color, move one of its vertices, transfer a ver-
tex from one polygon to the next, or mutate the drawing index of the polygons,
a parameter that determines the rendering sequence when generating an output
bitmap. By iteratively applying these mutations to the polygon constellation and
rendering afterwards, a target bitmap, usually a painting, is approximated ever
closer (Fig. 1). The objective value for each rendered bitmap is the difference to
the target bitmap, expressed as the mean squared error (MSE) over the color
channels:

MSE =

x·y·3∑
i=1

(Renderedi − Targeti)2

x · y
(1)

Here, x and y are the dimensions of the target bitmap in pixels, Renderedi
is the value of a red, green or blue (RGB) channel in the bitmap rendered from
the polygon constellation, and Targeti is the value of the corresponding RGB-
channel for the target bitmap. Since the maximum difference between two RGB
channels is 255, and there are three channels in one pixel, the maximum MSE
is 2552 · 3 = 195075. The minimum MSE of zero is reached iff the rendered
polygon constellation and the target bitmap are identical, a situation that is
highly unlikely for any realistic number of vertices. A simplified form of PFP was
proven to be NP-hard in 2020 [8]. Although this technically speaking guarantees
nothing about the full PFP-problem, it has no known subexponential exact
methods, and thereby provides a suitable testing ground for heuristic algorithms.
It also gives rise to some interesting questions about the complexity5 of visual
imagery, and produces aesthetically pleasing results.

There are 2563
(180·240) ≈ 7.93 · 10312,107 different existable bitmaps of 180 by

240 pixels, the default size in the experiments. A maximum of 180 · 240 · 4 =
172, 800 vertices is therefore sufficient to exactly reproduce any given target
bitmap of aformentioned dimensions[22]. However, Paauw and Van den Berg
also give a lower bound of 39,328 vertices, the lowest number that can give rise
to more different constellations than the number of possible bitmaps of 180 by
240 pixels. These numbers are a long way beyond computational efficiency, and
assuming the state space is not completely convex, the problem could well be
untractable, and heuristic algorithms such as simulated annealing, could provide
a feasible way forward.

In their seminal study, Paauw and Van den Berg used a stochastic hill-
climber, simulated annealing, and plant propagation on paintings-from-poygons
[22]. These three algorithms all retained their best found objective values (or
‘fitness’) throughout the runs of 106 function evaluations (Fig. 1, lower part).
The hillclimber and plant propagation achieved relatively good results, but the
same could not be said for simulated annealing. In this study however, we’ll take
care of that.

5 The term is intentionally loosely applied here; it could mean ‘Kolmogorov complex-
ity’, or ‘RLE-complexity’, amongst others.
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2 Simulated Annealing

Introduced by Kirkpatrick, Gelatt & Vecchi in 1983 and independently by Černý
in 1985, the simulated annealing algorithm draws inspiration directly from statis-
tical mechanics, the central discipline of condensed matter physics [18][10][15].
In the physical annaealing process, a desirable low energy state of a metal is
reached by optimizing the spatial configuration of the atoms. To reach such a
configuration, dislocated atoms need to move to vacant sites which can be fa-
cilitated by cooling the liquid metal slowly. Higher temperatures increase the
atoms’ movement, but also increases the number of expected vacant sites due
to the increase of mixing entropy. Simulated annealing emulates this process for
combinatorial optimization problems, even up to the exact Boltzmann factor
(Eq.2) used for ‘movement’ through a combinatorial state space. As such, it is
one of the few heuristic algorithms in the field that is more than just a metaphor;
it truly pries at the barrier between physics and information science. Good so-
lutions to combinatorial problems such as timetabling, the wiring of electronic
systems, the job shop scheduling problem and the traveling salesman problem
have been found earlier using simulated annealing [10][18][5][30][23].

For many heuristic algorithms, parameterization is “essential for good algo-
rithm performance” [26], and simulated annealing is no exception. It has proven
quite sensitive to parameter changes in an early study by Christopher Skíscim
and Bruce Golden, who also illustrated the difficulty of cooling down slowly on
the one hand, but not too slowly on the other [24]. A great number of cooling
schedules have been tested throughout history, varying from linear temperature
decrease to schedules that also allow reheating [9]. The logarithmic schedule by
Geman & Geman however, is the only one that has theoretically been proven to
reach a global optimum [13][21]. But the proof critically relies on the number of
iterations going to infinity, so aptly elaborated on by Kenneth Boese and Andrew
Kahng: a ‘where-you-are’ schedule like Geman & Geman’s, which needs infinite
computation time, is practically useless [9]. This is the critical mistake Paauw
and Van den Berg made on paintings-from-polygons, and even though they did
retain the ‘best-so-far’ constellations throughout the runs, their intermediate
and final results from simulated annealing were of abominable quality compared
to their other two algorithms[22]. According to the authors, its failure is “eas-
ily explained from its high temperature”, a claim that immediately warrants a
follow-up investigation. In this study, we will try nine different cooling sched-
ules, see to what extend the authors were right, and whether any improvement
is possible.

For now, we specifically do not address the other two algorithms from the ear-
lier study, and with good reason: PPA has shown to be largely parameter insen-
sitive and unbiased ([17][16][31], ongoing work), and the stochastic hillclimber’s
behaviour is so closely akin to simulated annealing with Geman&Geman on
c = 1, that a separate quantitative parametrization analysis seems somewhat
superfluous. A future study in qualitative parameters however (i.e. the algorith-
mic components), is still an open avenue waiting to be explored.
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3 Simulated Annealing on Paintings-from-Polygons

A simulated annealing run on the paintings-from-polygons problem starts with
randomly distributing v vertices over p polygons (v = 1000, p = 250 in this
study). Each polygon is first assigned three vertices, after which the remaining
vertices are randomly distributed. Then, all the vertices are assigned random
coordinate values within the dimensions of the target bitmap. Every polygon is
randomly assigned color and opacity (eq.: ‘alpha’) values within the bounds of its
four RGBA-channels. Each iteration, a randomly selected mutation is performed
on the polygon constellation. There are four different mutations types, each of
which has equal probability of occurring:

1. The change color mutation randomly chooses one polygon and one of its
RGBA channels, and assigns it a new random value 0 ≤ q ≤ 255.

2. The move vertex mutation randomly chooses one vertex from one polygon
and assigns it new random values 0 ≤ x < xMax and 0 ≤ y < yMax.

3. The transfer vertex mutation randomly chooses two polygons, p1 and p2,
in which p1 is not a triangle. A randomly selected vertex is then deleted
from p1, and a new vertex is placed somewhere on the line between two
neighboring vertices in p2.

4. The change drawing index mutation randomly chooses a polygon and
assigns its drawing index a new random value 0 ≤ q < p. If the new index
is lower than the current index, all indexes of the in-between polygons will
be increased by one. If the new index is higher than the current index, all
indexes of the in-between polygons above the new index will be decreased
by one.

After each iteration, the new constellation is rendered and the new MSE is
calculated. If the new constellation has a lower MSE (equiv.: a smaller pixel-by-
pixel difference with the target bitmap), the mutation is accepted and this new
constellation will be the starting point for the next iteration. Mutations that
lead to a constellation with a higher MSE are not immediately rejected though.
Analogous to the annealing metaphor, they might still be accepted, depending on
the magnitude of the difference and the temperature. The acceptance probability:
P (accept) is given by the Boltzmann factor

P (accept) = e
(−∆MSE

Ti
)

(2)

in which ∆MSE is the difference in MSE between the new and the old con-
stellation, and Ti is the temperature at iteration i retrieved from the cooling
schedule. Notice the correlation between the MSE difference and the acceptance
probability: a greater increase in MSE is still acceptable as long as the tempera-
ture Ti is still high. Correct parameterization of the cooling schedule is therefore
of critical importance to both annealing and simulated annealing. For PFP how-
ever, it appears as average the temperature alone predicts an upper bound on
the performance, irrespective of the actual trajectory a schedule might traverse.
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Fig. 2: The course of the temperature for different cooling schedules. The redder
the figure, the higher its average temperature. Note that the vertical scale for the
top row is much larger, due to the extremities in the Geman & Geman schedule.

4 Cooling Schedules

The first three cooling schedules used in this study are of the Geman & Geman
type, in which the temperature at iteration i is given by

Ti =
c

log(i+ 1)
. (3)

In the seminal study, its parameter was set to c = 195075, as it is the maximal
existable error barrier that separates two local minima in this problem [22]. In
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this study, we replicate the experiment with its original settings, but also add
two new parameter settings for this schedule: c = 50 and c = 1. The number of
iterations i = 106, lowering the temperature from T1 ≈ 648025 to T106 ≈ 32512
for c = 195075. For c = 50, the temperature descends from T1 ≈ 166 to T106 ≈ 8,
and for c = 1, it ranges from T1 ≈ 3 to T106 ≈ 0.17 (Fig. 2).

In the linear cooling schedule, the temperature Ti is defined as:

Ti = T1 · (1−
i

imax
) (4)

where in this study imax = 106 and T1 = 1000, resulting in a linear decrease of
temperature throughout the iterations (Fig. 2). The staircase cooling schedule
also starts T1 = 1000, but drops its temperature once every 105 iterations,
resulting in a temperature of 0 for the final 105 iterations. The motivation for the
staircase cooling schedule stems from a 2016-publication by Strobl and Barker,
who observed that temperatures should be kept constant for some duration of
time in order to reach thermal equilibrium [28].

In the sigmoidal cooling schedule, temperature follows a sigmoidal decrease
given by

Ti =
1000

1 + e10−5·(i−5·105) (5)

This cooling schedule decreases slowly in temperature during the run, with its
steepest decline, its maximum absolute derivative, at 5 · 105 iterations. It comes
from a website with cooling schedules once maintained by Brian T. Luke. It
appears to have gone offline6, but the schedule (and the author) can still be
found in a set of public slides at Stanford University [3]. The geometric cool-
ing schedule has a history of giving “satisfactory results” on a wide variety of
optimization problems [27]. Its temperature Ti is defined as:

Ti+1 = β · Ti (6)

where in this study, β is fixed at 0.99999, with T1 = 1000.
In a study on best-so-far solutions by Boese and Kahng, optimal cooling

schedules were shown to be non-monotonically decreasing [9]. As the simulated
annealing algorithm used on PFP study also retains its best-so-far value, period-
ical reheat might provide an alluring alternative to more traditional schedules.
The linear reheat cooling schedule linearly lowers its temperature to zero in
epochs of 105 iterations, but then reheats to half the previous epoch’s tempera-
ture, as can be seen in figure 2. This results in nine reheating cycles, with their
respective peaks being Ti = {1000, 500, ..., 3.90625} at i = {0, 105, ..., 9 · 105}.
The cosine cooling schedule follows a simple cosine function, defined as

Ti = 500 · cos( i

16753
) + 500. (7)

6 BTL’s cooling schedules can still be found through the waybackmachine [2].
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The fraction i
16753 is used to ensure 9.5 cycles in 106 iterations (notice that

16753 ≈ 106

2π∗9.5 ) and the constant term +500 at the end of the equation ensures
the oscillating function starts at T1 = 1000 to and ends at T106 = 0.

5 Experiments and Results

The performance of the different cooling schedules is evaluated by performing
five runs of simulated arnealing with each cooling schedule on each of the nine
different 180x240 target bitmaps: “Salvator Mundi”, “Lady with an Ermine”
and “Mona Lisa” painted by Leonardo Da Vinci between 1490 and 1503, “The
Starry Night” by Van Gogh in 1889, Portrait of composer Johann Sebastian
Bach by Elias Gottlieb Haussmann in 1746, “The Kiss” by Gustav Klimt in
1908, “Composition with Red, Blue and Yellow” by Mondriaan in 1930, “The
Persistence of Memory” by Dali in 1931, and “Convergence” by Pollock in 1952.
Each run consisted of 106 iterations7, with a nonchanging total of 250 polygons
and 1000 vertices (the experiment’s source code and data are publicly accessible
[4]). For every combination of cooling schedule and target bitmap, the normalized
average performance is calculated as the mean final MSE of the five runs

xnormalized =
x− xmin

xmax − xmin
(8)

in which x is the average MSE of the five runs after 106 iterations, xmin the
lowest MSE of the five, and xmax the highest. Notice that a low normalized
MSE corresponds to a high performance.

After completing all 405 runs, a firm pattern in the performance of the cooling
schedules emerges (Fig. 3). The cooling schedule of Geman & Geman with c = 1
performs best on all paintings, immediately followed by the geometric, linear
reheat and Geman & Geman with c = 50. These top four best performing cooling
schedules form a group with relatively similar performance when compared to
the other cooling schedules. Fifth, sixth and seventh are the sigmoidal, linear
and cosine cooling schedules, followed by the poor performance of the staircase.
Very much in last place is the high c-valued Geman & Geman cooling schedule
used in the study of Paauw and Van den Berg [22]. It is by far the worst possible
choice out of these nine.

The performance hierarchy of the cooling schedules can be characterized
more rigorously then by its final MSE order alone. It turns out that seven of
nine cooling schedules’ average log temperatures and final MSEs are bound by a
linear equation8 for each painting, with the error of fit between 0.11 and 0.04 on
all paintings. Two schedules however, are different. These are the linear reheat

7 “[Function evaluations are the gold standard for measuring the performance of
heuristic algorithms]” [7], but in our case, the number iterations corresponds ex-
actly to the number of evaluations, which is typical for simulated annealing.

8 polynomial equations on nonlog data yield comparable results.
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Fig. 3: Normalized mean end results for all nine cooling schedules reveal a consis-
tent, painting invariant performance hierarchy for simulated annealing cooling
schedules on the paintings-from-polygons problem. The red bars are the loga-
rithmically plotted average temperatures of the corresponding schedules on the
horizontal axes.

schedule, with an error of fit 6 to 11 times greater, and the geometric cooling
schedule with an error of fit 6 to 44 times greater, depending on the specific
painting. The remarkable thing is however, these errors are larger in downward
direction.

In other words, when the final MSE and the temperature are compared, all
schedules show roughly the same performance, independent of their actual shape.
The only two exceptions are the linear reheat and geometric cooling schedules,
which perform better than other schedules with the same average temperature.
A future experiment, with all cooling schedules normalized to the same average
temperature, should either confirm or disconfirm whether these differences are
substantial.
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Fig. 4: Opacity per polygon drawing index averaged over 45 runs (nine paintings,
five runs each) per schedule. Remarkably enough, the three best performing
cooling schedules show a mean parabolic curvature increase, suggesting that
good approximations have low-opacity polygons on top.

Another remarkable phenomenon can be witnessed in the structural devel-
opment of the polygon constellations of this experiment. After random initial-
ization, a typical constellation9 holds about 111 triangles, 71 quadrangles, 40
pentagons, 18 hexagons and smaller numbers of 7-gons to to 12-gons. But a typ-
ical end constellation has up to 28% fewer quadrangles, penta- and hexagons,
and very small numbers of larger polygons, up to as many as 35 vertices. Most
striking however, is that the number of triangles increases by about 16%, to
roughly 128. It is unknown what causes this increase, but it is thought that tri-

9 Here, ’a typical constellation’ means: values averaged over all constellations in the
experiment.
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angles ‘facilitate’ optimization through their relative mobility in vertex position.
This however, still requires further confirmation.

A final interesting phenomenon is that the three best performing cooling
schedules appear to exert an influence on the relation between a polygon’s opac-
ity and its drawing index. For the three best performing cooling schedules, a
higher polygon drawing index corresponds to a lower opacity (Fig. 4). When
fitting a parabola, its steepness increases 3 to 24 times for the best three cooling
schedules, suggesting that succesful optimization runs produce more transparent
polygons on top. Again, further analysis could (dis)confirm the consistency of
this effect .

6 Conclusion

It appears that Paauw and Van den Berg were right in their assessment that the
poor performance of their simulated annealing was due to the high temperatures
used at the time. As shown in this study, the success of the algorithm depends
largely on the average temperature of the schedule only, a few interesting excep-
tions aside. Furthermore, successful runs seem to increase the number triangles
in a constellation, and decrease the opacity of its lastly drawn polygons. To what
extent these properties are more typical to the problem or to simulated annealing
itself still remains a subject for future endeavours.
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