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A ‘branch and bound’ algorithm is presented for solving the traveling salesman problem. 
The set of all tours (feasible solutions) is broken up into increasingly small subsets by a 
procedure called branching. For each subset a lower bound on the length of the tours 
therein is calculated. Eventually, a subset is found that contains a single tour whose length is 
less than or equal to some lower bound for every tour. The motivation of the branching and 
the calculation of the lower bounds are based on ideas frequently used in solving 
assignment problems. Computationally, the algorithm extends the size of problem that can 
reasonably be solved without using methods special to the particular problem. 
 
 
1. Introduction 
 
The traveling salesman problem is easy to state: A salesman, starting in one city, wishes to 
visit each of n-1 other cities once and only once and return to the start. In what order 
should he visit the cities to minimize the total distance traveled? For 'distance' we can 
substitute time, cost, or other measure of effectiveness as desired. Distance or costs 
between all city pairs are presumed known. 
 The problem has become famous because it combines ease of statement with difficulty 
of solution. The difficulty is entirely computational, since a solution obviously exists. There 
are (n-1)! possible tours, one or more of which must give minimum cost. (The minimum cost 
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could conceivably be infinite – it is conventional to assign an infinite cost to travel between 
city pairs which have no direct connection.) 

The traveling salesman problem recently achieved national prominence when a soap 
company used it as the basis of a promotional contest. Prizes up to $10,000 were awarded 
for finding the most correct links in a particular 33-city problem. Quite a few people found 
the best tour. (The tie breaking contest for these succesful mathematicians was to complete 
a statement of 25 words or less on "I like ... because ...".) A number of people, perhaps a 
little over-educated, wrote the company that the problem was impossible – an interesting 
misinterpretation of the state of the art. 
 For the early history of the problem, see Flood[1]. In recent years a number of methods 
for solving the problem have been put forward. Some suffer from inefficiency, others 
produce solutions that are not necessarily optimal, and still others require intuitive 
judgments that would be hard to program on a computer. For a detailed discussion, see 
Gonzalez[2]. We shall restrict our discussion to methods that (1) guarantee optimality, (2) 
seem reasonable to program and (3) are general, i.e. not ad hoc to the specific numerical 
problem. 
 Among such methods the approach that has been carried furthest computationally is 
that of dynamic programming. Held and Karp[3] and Gonzales[2] have independently 
applied the method and have solved various test problems on computers. Gonzalez 
programmed an IBM 1620 to handle problems up to 10 cities. In his work the time to solve a 
problem grew somewhat faster than exponentially as the number of cities increased. A 5-
city problem took 10 seconds, a 10-city problem took 8 minutes, and the addition of one 
more city multiplied the time by a factor, which, by 10 cities, had grown to 3. Storage 
requirements expanded with similar rapidity. 
 Held and Karp[3] have solved problems up to 13 cities by dynamic programming using an 
IBM 7090. A 13-city problem required 17 seconds. But such is the power of an exponential 
that, if their computation grows at the same rate as that of Gonzalez, a 20-city problem 
would require about 10 hours. Storage requirements, however, may become prohibitive 
before then. For larger problems than 13 cities, Held and Karp develop an approximation 
that seems to work well but does not guarantee an optimal tour.  
 We have found two papers in which the problem has been approached by methods 
similar to our 'branch and bound' algorithm. Rossman, Twery and Stone[4] in an 
unpublished paper apply ideas which they have called combinatorial programming[5]. To 
illustrate their method they present a 13-city problem. It was solved in 8 man-days. We 
have solved their problem by hand in about 3½ hours. Eastman[6], in an unpublished 
doctoral thesis and laboratory report, presents a method of solution and several variations 
on it. His work and ours contain strong similarities. However, to use our terminology, his 
ways of choosing branches and of calculating bounds are different from ours. He basically 
solves a sequence of assignment problems which give his bounds. We have a simpler 
method, and for branching we use a device which has quite a different motivation. The 
biggest problem Eastman solves is 10 cities and he gives no computation times, so that 
effective comparisons are difficult to make. 
 Most published problems are symmetric, i.e., the distance from city i to city j is the same 
as from j to i. The algorithm to be presented also works for asymmetric problems; in fact, it 
seems to work better. Asymmetric problems arise in various applications. As an example 
from production scheduling, suppose that there is a production cycle of some time period, 
during which an assembly line must produce each of n different models. The cost of 



switching from model i to model j is cij. What order of producing models minimizes total 
setup cost? This is a traveling salesman problem in which it would not necessarily be 
expected that cij = cji. 
 To summarize,  13 cities is the largest problem which we know about that has been 
solved by a general method which guarantees optimality and which can reasonably be 
programmed for a computer. Our method appreciably increases this number. However, the 
time required increases at least exponentially with the number of cities and eventually, of 
course, becomes prohibitive. Detailed results are given below. 
 
2. The Algorithm 
 
The basic method will be to break up the set of all tours into smaller and smaller subsets 
and to calculate for each of them a lower bound on the cost (length) of the best tour therein. 
The bounds guide the partitioning of the subsets and eventually identify an optimal tour - 
when a subset is found that contains a single tour whose cost is less than or equal to the 
lower bounds for all other subsets, that tour is optimal. 
 The subsets of tours are conveniently represented as the nodes of a tree and the process 
of partitioning as a branching of the tree. Hence we have called the method 'branch and 
bound'. 
 The algorithm will simultaneously be explained and illustrated by a numerical example. 
The explanation does not require reference to the example, however, for those readers who 
wish to skip it. 
 
2.1 Notation 
 
The costs of the traveling salesman form a matrix. Let the cities be indexed by i = 1, ... , n. 
The entry in row i and column j of the matrix is the cost for going from city i to city j. Let 
 

C = [c(i,j)] = cost matrix. 
 
C will start out as the original cost matrix of the problem but will undergo various 
transformations as the algorithm proceeds. A tour, t, can be represented as a set of n 
ordered city pairs, e.g.,  
 
  t = [ (i1, i2) (i2, i3) ... (in-1, in) (in, i1) ], 
 
which form a circuit going to each city once and only once. Each (i,j) represents an arc or leg 
of the trip. The cost of a tour, t, under a matrix, C, is the sum of the matrix elements picked 
out by t and will be denoted by z(t): 
 
  z(t) = ∑  c(𝑖, 𝑗)(𝑖,𝑗) 𝑖𝑛 𝑡 .  

 
Notice that t always picks out one and only one cost in each row and each column. Also, let 
 
  X, Y, Y = nodes of the tree; 
  w(X) = a lower bound on the cost of the tours of X, i.e., z(t) ≥ w(X) for t a tour of X; 
  z0 = the cost of the best tour found so far in the algorithm. 



2.2 Lower Bounds 
 
A useful concept in constructing lower bounds will be that of reduction. If a constant, h, is 
subtracted from each element of a row of the cost matrix, the cost of any tour under the 
new matrix is h less than under the old. This is because every tour must contain one and 
only one element from that row. The relative costs of all tours are unchanged, however, and 
so any tour optimal under the old will be optimal under the new. 
 The process of subtracting the smallest element of a row from each element in the row 
will be called reducing the row. A matrix with nonnegative elements and at least one zero in 
each row and column will be called a reduced matrix and may be obtained, for example, by 
reducing rows and columns. If z(t) is the cost of a tour t under a matrix before reduction, 
z1(t) the cost under the matrix afterward, and h the sum of constants used in making the 
reduction, then 
 

z(t) = h + z1(t).          (1) 
 
Since a reduced matrix contains only nonnegative elements, h constitutes a lower bound on 
the cost t under the old matrix. 
 Consider then the 6-city problem shown in Fig. 1. Reduction of the matrix by rows, then 
columns, gives the matrix of Fig. 2. Total reduction is 48 so that z(t) ≥ 48 for all t. 
 

 
 
 
Fig.1. (left) Cost matrix for a 6-city problem. A typical tour might be t=[(1,3) (3,2) (2,5) (5,6) 
(6,4) (4,1)], which has the cost (length) z = 43+13+30+5+9+21=121. Fig.2. (right) Cost matrix 
after reducing rows and columns. Circled numbers are values of θ(i,j). 
 
 
2.3 Branching 
 
The splitting of the set of all tours into disjoint subsets will be represented by the branching 
of a tree, as illustrated bij Fig. 3. The node containing 'all tours' is self-explanatory. The node 
containing i,j represents all tours which include the city pair (i,j). The node containing i,j 
represents all tours that do not. At the i,j node there is another branching. The node 
containing k,l represents all tours that include (i,j) but not (k,l), whereas k,l represents all 
tours that include both (i,j) and (k,l). In general, by tracing from a node, X, back to the start, 
we can pick up which city pairs are committed to appear in the tours of X and which are 



forbidden from appearing. If the branching process is carried far enough, some node will 
eventually represent a single tour. Notice that at any stage of the process, the union of the 
sets represented by the terminal nodes is the set of all tours. 
 When a node X branches into two further nodes, the node with the newly committed 
city pair will frequently be called Y and the node with the newly forbidden city pair Y. 
 
 

 
 

Fig. 3. Start of tree. 
 
2.4 Flow Chart 
 
The workings of the algorithm will be explained by tracing through the flow chart of Fig. 4. 
 Box 1 starts the calculation by putting the original cost matrix of the problem into C, 
setting X=1 to represent the node, 'all tours', and setting the cost of the best tour so far to 
infinity. 
 Box 2 reduces the matrix and labels node X with its lower bound w(X). 
 Box 3 selects (k,l), the city pair on which to base the next branching. The goal in doing 
this is to split the tours of X into a subset (Y) that is quite likely to include the best tour of 
the node and another (Y) that is quite unlikely to include it. Possible low cost tours to 
consider for Y are those involving an (i,j) for which c(i,j)=0. 
 Consider therefore the costs for tours that do not contain (i,j), i.e., possible tours for Y. 
Since city i must be reached from some city, these tours must incur at least the cost of the 
smallest element in column j, excluding c(i,j). Since city j must connect to some city, the 
tours must incur at least the cost of the smallest element in row i, excluding c(i,j). Call the 
sum of these costs θ(i,j). We shall choose (k,l) to be that city pair that gives the largest θ(i,j). 
[This amounts to a search over (i,j) such that c(i,j) = 0, since otherwise θ(i,j) = 0.] Notice that, 
if c(i,j) is set to infinity and then row i and column j are reduced, the sum of the reducing 
constants is θ(i,j). 
 For the example, the θ(i,j) values are written in small circles placed placed in the cells of 
the zeroes of Fig.2. The largest θ is θ(1,4) = 10 + 0 = 10 and so (1,4) will be the first city pair 
used for branching. 
 Box 4 extends the tree from node X to Y. As will be shown below, w(Y) = w(X) + θ(k,l). In 
the example w(Y) = 10 + 48 = 58 and the node is so labeled in Fig. 5b. 
 
 
 



 
Fig. 4. Flow chart of the algorithm. 

 
 Box 5 sets up Y. Since the pair (k,l) is now committed to the tours, row k and column l are 
no longer needed and are deleted from C. Next, notice that (k,l) will be part of some 
connected path generated by the city pairs that have been committed to the tours of Y. 



Suppose the path starts at city p and ends at city m. (Possibly p=k or m=l or both.) The 
connecting of m to p should be forbidden for it would create a subtour (a circuit with less 
than n cities) and no subtour can be part of a tour. Therefore, set c(m,p) = inf. 
 After these modifications C can perhaps be reduced in the following places: row m, 
column p, any columns that had a zero in row k, and any rows that had a zero in column l. 
All other rows and columns contain some zero that cannot have been disturbed. Let h be 
the sum of the new reducing constants. The lower bound for Y will now be shown to be 
 
           w(Y) = w(X) + h 
 
 The algorithm operates so that the investigation of each node, X, starts in Box 3 with a 
matrix C and a lower bound w(X) that stand in a special relation. If t is any tour of X, z(t) its 
cost under the original matrix, t1, the city pairs of t left after removing those committed to 
the tours of X, and z1(t1) the cost of t1 under C, then it will be shown that 
 

z(t) = w(X) + z1(t1).          (2) 
 
This expression is true for the first node by (1). Suppose that from a bound w(X1) and matrix 
C1 of a node X1, the algorithm constructs a bound w(X2) and reduced matrix C2 for a node X2. 
(X2 will be on some branch out of X1.) It will be shown that, if (2) is true for X1, (2) will also be 
true for X2. 
 The operations on C1 to get C2 (shown in Boxes 5 and 10) are always of the form: delete 
row i and column j for each (i,j) committed to the tours of X2, insert various infinities, reduce. 
The lower bound is always of the form 
 

     w(X2) = w(X1) +  Σ c1(i,j) + h,         (3) 
 
 
where the summation is over the city pairs committed in X2 but not in X1 and h is the sum of 
the reducing constants. But consider any t in X2 (and therefore in X1). If we let z1(t1) be the 
cost of the uncommitted city pairs of X1 under C1 and z2(t2) be the cost of the uncommitted 
city pairs of X2 under C2, 
 

           z1(t1)  = Σ c1(i,j) + h + z2(t2) 

 
 
or using (2), assumed true for X1, 
 

           z(t) = w(X1) + Σ c1(i,j) + h + z2(t2) 

 
                  = w(X2) + z2(t2) 
 
so that (2) is true for X2, as was to be shown. 
Equation (3) is used to calculate the lower bounds in Boxes 4, 5, and 10. That these lower 
bounds are valid is established by (2) and the nonnegativity of the elements of C. 
 



 

 
 

Fig. 5. (left) Matrix after deletion of row 1 and column 4. (right) First branching. 
 
 
 For the example, the matrix of Fig.5 shows the deletion of row 1 and column 4. The 
connected path containing (1,4) is (1,4) itself, so that (m,p) = (4,1) and we set c(4,1) = inf. 
Looking for reductions, we find that row 2 can be reduced by 1. The w(Y) = 48+1 = 49 as 
shown. 
 It may be worth giving another example of finding (m,p). Suppose the committed city 
pairs were (2,1) (1,4) (4,3) and (5,6) and (k,l) were (1,4). Then the connected path containing 
(k,l) would start at 2 and end at 3 to yield (m,p) = (3,2). 
 Box 6 checks to see whether a single tour node is near. 
 Box 7 selects the next node for branching. There are a number of ways the choice might 
be made. The way shown here is to pick the node with the smallest lower bound. This leads 
to the fewest nodes in the tree. 
 Box 8 checks to see whether the algorithm is finished – whether the best tour so far has 
a cost less than or equal to the lower bounds on all terminal nodes of the tree. 
 Box 9 is a time saver. Most branching is from Y nodes, i.e., to the right. Such branching 
involves crossing out rows and columns and other manipulations that can be done on the 
matrix left over from the previous branching. When this case occurs, Box 9 detects it and 
the algorithm returns directly to Box 3. 
 Box 10 takes up the alternate case of setting up an appropriate lower bound and 
reduced matrix for an arbitrary X. Starting from the original cost matrix, rows and columns 
are deleted for city pairs committed to the tours of X, infinities are placed to block subtours 
and at forbidden city pairs, and the resulting matrix is reduced. The lower bound can be 
computed from (3) by thinking of X1 in (3) as a starting node with w(X1) = 0 and matrix equal 
the original cost matrix. Since different ways of reducing a matrix may lead to different sums 
for the reducing constants, the recalculated w(X) is substituted for the former one. 
 Boxes 11 and 12 finish up a single tour node. By the time C is a 2x2 matrix, there are only 
two feasible (i,j) left and they complete a tour. Since the box is entered with a reduced 
matrix, the costs of the final commitments are zero and z=w(Y) by (2). If z<z0, the new tour is 
the best yet and is read off the tree to be saved. 
 Returning to the example, Box 7 picks 1,4 as the second node for branching and, since 
this is a branching to the right, C is already available in reduced form. As shown in Fig.6, the 
next branching is on the basis of (2,1) with (m,p) = (4,2). Next, we go to the right from 2,1 on 



(5,6) with (m,p) = (6,5) and then from 5,6 on the basis of (3,5) with (m,p) = (6,3). At this 
point C is a 2x2 matrix and we jump to Box 11 to finish the tour. We find z=63 which is 
stored as z0 but, on returning to Boxes 7 and 8, we see that 1,4 has a lower bound of 58. To 
set up this node we go through Box 10. After the next branching, however, Box 8 shows that 
the problem is finished. 
 
 

 
Fig. 6. Final Tree. 

 
3. Discussion 
 
At this point, let us stand back and review the general motivation of the algorithm. It 
proceeds by branching, crossing out a row and column, blocking a subtour, reducing the 
cost matrix to set a lower bound and then repeating. Although it is clear that the optimal 
solution will eventually be found, why should these particular steps be expected to be 
efficient? First of all, the reduction procedure is an efficient way of building up lower 
bounds and also of evoking likely city pairs to put into the tour. Branching is done so as to 
maximize the lower bound on the k,l node without worrying too much about the k,l node. 
The reasoning here is that the k,l node represents a smaller problem, one with the kth row 
and lth column crossed out. By putting the emphasis on a large lower bound for the larger 
problem, non-optimal tours are ruled out faster. 
 Insight into the operation of the algorithm is gained by observing that the crossing out of 
a row and column and the blocking of the corresponding subtour creates a new traveling 
salesman problem having one fewer city. Using the notation of Box 5, we can think of city m 
and city p as coalesced into a single city, say, m'. Setting c(m,p) = inf. is the same as setting 
c(m', m') = inf. The blocking of subtours is a way of introducing the tour restrictions into 



what is otherwise an assignment problem and is accomplished rather successfully by the 
algorithm. 
 Finally, unlike most mathematical programming algorithms, the one here has an 
extensive memory. It is not required that a trial solution at any stage be converted into a 
new and better trial solution at the next stage. A trial branch can be dropped for a moment 
while another branch is investigated. For this reason there is considerable room for 
experiment in how the next branch is chosen. On the other hand the same property leads to 
the ultimate demise of the computation – for n sufficiently large there are just too many 
branches to investigate and a small increase in n is likely to lead to a large number of new 
nodes that require investigation. 
 
4. Modifications 
 
A variety of embellishments on the basic method can be proposed. We record several that 
are incorporated in the computer program used in later calculations. For the program itself, 
see Sweeney[9]. 
 
4.1 Go To The Right 
 
It is computationally advantageous to keep branching to the right until it becomes obviously 
unwise. Specifically, the program always branches from the k,l node unless its lower bound 
exceeds or equals the cost of a known tour. As a result a few extra nodes may be examined, 
but usually there will be substantial reduction in the number of time-consuming setups of 
Box 10. 
 One consequence of the modification is that the calculation goes directly to a tour at the 
beginning. Then, if the calculations are stopped before optimality is proven, a good tour is 
available. There is also available a lower bound on the optimal tour. The bound may be 
valuable in deciding whether the tour is sufficiently good for some practical purpose. 
 
4.2 Throw Away the Tree 
 
A large problem may involve thousands of nodes and exceed the capacity of high-speed 
storage. Storage can be saved, although usually at the expense of time, by noting that, at 
any point in the computation, the cost of the best tour so far sets an upper bound on the 
cost of an optimal tour. Let the calculation proceed by branching to the right (storing each 
terminal node) until a single tour is found with some cost, say, z0. Normally, one would next 
find the terminal node with the smallest lower bound and branch from there. Instead, work 
back through the terminal nodes, starting from the single tour, and discard nodes from 
storage until one is found with a lower bound less than z0. Then, branch again to the right all 
the way to a single tour or until the lower bound on some right-hand node builds to z0. (If 
the branch goes to the end, a better tour may be found and z0 assigned a new, lower value). 
Repeat the procedure: again work up the branch, discarding terminal nodes with bounds 
equal or greater than z0 until the first one smaller is found; again branch to the right, etc. 
 The effect of the procedure is that very few nodes need be kept in storage – something 
on the order of a few n. These form an orderly sequence stretching from the current 
operating node directly back to the terminal node on the left-most branch out of 'all tours'. 



 As an illustration, consider the problem and tree of Figure 6. The computation would 
proceed by laying out in storage the nodes 4,1; 2,1; 5,6; and 3,5. At the next step we find a 
tour with z0 = 63 and the obviously useless node 4,3. The tour is stored separately from the 
tree. Working up the branch, first 3,5 is discarded, then 5,6 and 2,1, but 1,4 has a bound less 
than z0. Therefore, branching begins again from there. A node 6,3 is stored and then we find 
the node to the right has a bound equal (s) z0 and may be discarded. Working back up the 
tree again, 6,3 is discarded and, since that was the only remaining terminal node, we are 
finished. 
 The procedure saves storage but increases computation time. If the first run to the right 
turns up a rather poor tour, i.e. large z0 tour, the criterion for throwing away nodes is too 
stiff. The calculation is forced to branch out from many nodes whose lower bounds actually 
exceed the cost of the optimal tour. The original method would never do this for it would 
never explore such nodes until it had finished exploring every node with a smaller bound. In 
the process, the optimal tour would be uncovered and so the nodes with larger bounds 
would never be examined. 
 
 
4.3 Taking Advantage of Symmetry 
 
If the travelling salesman problem is symmetric and t is any tour, another tour with the 
same cost is obtained by traversing the circuit in the reverse direction. Probably the most 
promising way to handle this is to treat the city pair (i,j) as not being ordered. This leads 
naturally to a new and somewhat more powerful bounding procedure. Although the basic 
ideas are not changed much, considerable reprogramming is required. So far, we have not 
done it. 
 There is another way to take advantage of symmetry and this one is easy to incorporate 
into our program. All reverse tours can be prohibited by modifying the nodes along the 
leftmost branch of the tree. These are the nodes with no city pairs committed but some 
forbidden. Suppose that such a node, X, branches into nodes, Y, with (k,l) committed, and, Y, 
(k,l) forbidden. The reverse tours of Y all have (l,k) in them. They cannot be in Y for the 
presence of both (k,l) and (l,k) is not possible in any tour. Such of the reverse tours as were 
in X are in Y. We may prohibit them by setting c(l,k) = inf. [as well as c(k,l) = inf.] in any 
matrix for Y. Thus, a reverse tour is prohibited as soon as the tour itself is identified to the 
extent of having one committed city pair. 
 
4.4  A Computational Aid 
 
In both hand and machine computation  θ(k,l) is easiest calculated by first finding, for each 
row k and column l of the reduced matrix:  
 
 α(k) = the second smallest cost in row k. 
  
 β(l) = the second smallest cost in column l. 
 
Then θ(k,l) = α(k) +β(l)  for any (k,l) which has c(k,l) = 0. In a hand computation the α(k)  can 
be written as an extra column to the right of the matrix and the β(l) as an extra row at the 
bottom. After working out a few problems, one can see that when the branching is to the 



right there is no need to search the whole matrix to reset α and β but that only certain rows 
and columns need be examined. 
 
4.5 Other possibilities 
 
If desired, the algorithm can be modified so as to generate all optimal solutions. Instead of 
discarding nodes with w(X) = z0, split them up further until eventually all the terminal nodes 
either have w>z0 or are optimal single tours with z=z0. Our computer program does not 
include this modification because in some cases it will increase the computing time a great 
deal – suppose the cost matrix were all zeroes. 
 Quite possibly, the average computing time can be decreased by solving the assignment 
problem for the original cost matrix and reducing the matrix by the cost of the optimal 
assignment in Box 2. (Some methods for solving the assignment problem leave it in reduced 
form.) The advantage lies in the larger lower bound with which the problem starts. The 
closer the starting lower bound to the cost of the optimal tour, the less is the branching that 
may be expected. Our exploration of the possible gains has not been extensive and has 
yielded mixed results: Croes'20-city problem[8] was speeded up, but some others were 
lengthened. 
 The idea that we are calling 'branch and bound' is more general than the traveling 
salesman algorithm. A minimal solution for a problem can be found by taking the set of all 
feasible solutions, splitting it up into disjoint subsets, finding lower bounds on the objective 
function for each subset, splitting again the subset with the smallest lower bound, and so 
forth, until an optimal solution is found. The efficiency of the process however, rests very 
strongly on the devices used to split the subsets and to find the lower bounds. As a simple 
example of another use of the method, if the step of setting c(m,p) = inf. is omitted from the 
traveling salesman algorithm, it solves the assignment problem. For another example, see 
Doig and Land [10]. 
 

TABLE I 
Mean and Standard Deviation of T for Random Distance Matrices 

(T = time in minutes used to to solve Traveling Salesman Problem on IBM 7090.) 
 

 
 
 (a) Obtained by plotting the cumulative frequency on log normal probability paper and fitting a 
straight line, except in the 40-cities case for which the computation was numerical. In case of 10 
cities the log normal fits only the tail of the distribution – 30 per cent of the problems went directly 
to the solution without extra branching and thereby produced a lump of probability at 0.002 minute. 

 
 
 



5. Calculations 
 
Problems up to 10 cities can be solved easily by hand. Although we have made no special 
study of the time required for hand computations, our experience is that a 10-city problem 
can be solved in less than an hour. 
 The principal testing of the algorithm has been by machine on an IBM 7090. Two types 
of problems have been studied: (1) asymmetric distance matrices with elements consisting 
of uniformly distributed 3-digit random numbers and (2) various published problems and 
subproblems constructed therefrom by deleting cities. Most of the published problems have 
been made up from road atlases or maps and are symmetric. 
 The random distance matrices have the advantage of being statistically well defined. 
Average computing times are displayed in Table I and  curve (a) of Fig. 7. Problems up to 20 
cities usually require only a few seconds. The time grows exponentially, however, and by 40 
cities is beginning to be appreciable, averaging a little over 8 minutes. As a rule of thumb, 
adding 10 cities to the problem multiplies the time by a factor of 10.  
 The standard deviation of the computing time also increases with problem size as may 
be seen in Table I. Because the distribution of times is skew, the simple standard deviation is 
a little misleading, at least for the purpose of estimating the probability of a long calculation. 
Consequently, a log normal distribution has been fitted to the tail of the distribution. A use 
of the tabulated numbers would be, for example, as follows: A two-sigma deviation on the 
high side in a 40-city problem would be a calculation which took (3.74)2(4.55) = 64 minutes. 
In other words, the probability that a 40 city random distance problem will require 64 
minutes or more is estimated to be 0.023. 
 Symmetric problems have usually taken considerably longer than random distance 
problems of the same size. To obtain a variety of problems of increasing size, we have taken 
published problems and abstracted subproblems of increasing size. The first 10 cities were 
taken, then the first 11 cities, etc., until the computing times become excessive. Curves (b) 
and (c) of Fig. 7 show the results for subproblems pulled out of the 25- and 48-city problems 
of Held and Karp[3]. The 25-city problem itself took 4.7 minutes. We note that Held and 
Karp's conjectured optimal solution is correct. 
 A few miscellaneous problems have also been solved. Croes'[8] 20-city problem took 
0.126 minutes. A 64 'city' knight's tour took 0.178 minutes. 



 
Fig. 7. Computing times on IBM 7090. Grey: Average times for 3 digit random number 
distance matrices. Red: Subproblems derived from Held and Karp’s 25-city problem. Blue: 
Subproblems derived from Held and Karp’s 48 city problem. 
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8. Notes on this refurbished edition 
 
Much inspired by Tim Rohlfs' refurbished edition of Stephen Cook's paper, I refurbished this 
paper by Little et al. (henceforth “Lital”), making it suitable for searching and editing, and  
hopefully adding some readability as well. I have almost literally stuck to the text as handed 
down to us by Little et al., but also made a few changes, mainly in layout, placing images 
and removing a few typo's. I also numbered the paragraphs, and a changelog is supplied 
after this note. At some point, I might turn it into a wiki-page or a more interactive format 
too. 
Richard Olij did a tremendous job on proofreading the manuscript, but in case you find any 
typo's, or have other questions, please mail to Daanvandenberg1976 at the mailservice that 
starts with the seventh letter. Or look me up on LinkedIn, Facebook or Twitter.   
 
 
9. Changelog 
 



1. I've numbered the sections, which was not in the original paper, making it somewhat 
easier to discuss the paper (e.g.: over the phone). 
 
2. The lower bound on the cost of tours in X, w(X), is it a w or an omega (ω)? For now, I 
chose a 'w'. 
 
3. [typo] "cost under the original martix" => "cost under the original matrix" 
 
4. Prizes up to $10,000 were [unreadable part] the most correct links in a particular 33-city 
problem => Prizes up to $10,000 were awarded for finding the most correct links in a 
particular 33-city problem 
 
5. recently achieved national prom[unreadable part] => recently achieved national 
prominence 
 
6. As will be shown below, [unreadable character](Y) = w(X) + θ(k,l) => As will be shown 
below, w(Y) = w(X) + θ(k,l) 
 
7. I replaced the overline by an underline. This does not have my preference, but it is simply 
much easier in Word. 
 
8. I’ve redone figures 1 and 2, replacing infinity signs by “inf.” and lowlightling them in grey. 
Values are the same, of course. I did put the pictures in a different place, directly below 
below the text that concerns them so the reader can ‘follow’ Lital’s numerical example with 
even less effort than in the original paper. For this reason, words “left” and “right” were 
added in the caption. 
 
9. In figure 5, I replaced “a” and “b” by “left” and “right” 
 
10. In figure 7, I replaced letters with colours, also in the legend. The grey dot that appears 
to be missed by the line is also missed in the original paper. 
 
11. and the node [unreadable] so labeled in Fig. 5b. => and the node is so labeled in Fig. 5b. 
 
12. After consulting with colleagues, I replaced all infinity signs by “inf.”. The reason is that 
the infinity signs simply don’t turn out well in the rendered pdf. Maybe I’ll find a solutiont 
for that later. 
 
13. right has a bound equal ### z0 and may be discarded => right has a bound equal z0 and 
may be discarded (We’re really not sure wat is says here. It looks like (s) or (8) but we’re 
expecting ‘to’.) 
 


