AN ALGORITHM FOR THE TRAVELING SALESMAx
PROBLEM

John D. C. Little
Massackusetis Institute of Technology
Katta G. Murty*

Indian Siatistical Insittule
Dura W. Sweeney{
International Businese Machines Corporation
Caroline Karel
Case Institule of Technology
(Received March 8, 1963)

A ‘branch and bound’ algorithm is presented for aolving the traveling
salesman problem. The set of all tours {feasible solutions) is broken up
inte increasingly small subseta by a procedure called branching. For each
subset a lower bound on the length of the tours therein ia calculated.
Eventuslly, a subset is found that contains a single tour whose length is
less than or equal to some lower bound for every tour. The motivation
of the branching and the saloulation of the lower bounds are based on idess
frequently used in solving assignment problems. Computaticnally, the
algorithm extends the size of problem that ¢an reasonably be solved
without using methods spesial to the particular problem.

HE TRAVELING salesman problem is easy to state: A salesmt

gtarting in one city, wishes to visit each of »—1 other cities once ans
only once and return to the start. In what order should he visit the cte
to minimize the total distance traveled? For ‘distance’ we can substitcy
time, cost, or other measure of effectiveness as desired. Distance or ot
between all city pairs are presumed known.

The problem has become famous because it combines ease of statenxs’
with difficulty of solution. The difficulty is entirely computational, =~
a solution obviously exists. There are (n—1}! possible tours, one or ™™
of which must give minimum cost. (The minimum cost could concens:
be infinite—it is conventional to assign an infinite cost to travel Iet+
city pairs that have no direct connection.) _

The traveling salesman problem recently achieved national promi-

* Work done while on a study assignment at Case Institute of Technalosy-
t Work done while a Sioan Fetiow at M.I.T.

972

AT AR N .

«hen 8 8o
ap to $10
realar 33
ue-breaki
1 stateme
pﬂlple_, pe
A48 IMpo:

For t
» ymber

- uffer {rol

aptimal, €
program
We shall
2oseom |
peeifie
Amor
Dtationa
and Giong
arvus
v handle
S0ew S0
v ey
e addit
11} rities,
aapdity.
Held
STnunin
i sucl
vothe -3
li-nl.t l(
vre t)
s
4t
Wel
et
Ry,
ed e
et
rpe

T

]

T

Traveling Salesman Problem 973

¥hen a soap company used it a8 the basis of a promotional contest. Prizes
; ol #%g the most correct links in a par-
teular 33-city probf Quité 'a few people found the best tour. (The
tie-breaking contest for these successful mathematicians was to complete
1 statement of 25 words or less on “I like . . , because ...”.) A number of
peaple, perhaps a little over-educated, wrote the eompa.ny that the problem
was impossible—an interesting misinterpretation of the state of the art.

For the early history of the problem, see FLoopn.i! In recent years
s number of methods for solving the problem have been put forward. Some
suffer from inefficiency, others produce solutions that are not necessarily
optimal, and still others require intuitive judgments that would be hard to
program on a computer. For a detailed discussion, see Gownzaresz, !
We shall restrict our discussion to methods that (1) guarantee optimality,
{2) seem reasonable to program, and (3) are general, i.e., not ad koc to the
specific numerical problem.

Among such methods the approach that has been carried furthest com-
putationally is that of dynamic programming. Hrrp axp Kaxe® and
and Gonzalez®! have independently applied the method and have solved
mous test problems on computers. Gonzalez programmed an IBM 1620
to handle problems up to 10 cities. In his work the time to solve a problem

somewhat faster than exponentially ag the number of cities increased.

A 5-city problem took 10 seconds, a 10-¢ity problem took 8 minutes, and

gbe addition of one more city multiplied the time by & factor, which, by

40 cities, had grown to 3. Storage requirements expanded with similar
apidity.

Held and Karp® have solved problems up to 13 cities by dynamic pro-

gamming using an IBM 7000. A 13-city problem required 17 seconds.
But such is the power of an exponential that, if their computation grows
i the same rate as that of Gonzalez, 8 20-city problem would require
bout 10 hours. Storage requirements, however, may become prohibitive
rfore then. For larger problems than 13 cities, Held and Karp develop
n s.pprcmms.t.mn that seems to work well but does not guarantee an opti-
ral tour.

We have found two papers in which the problem has been approached

f methods similar to our ‘branch and bound’ salgorithm. Rossman,

RY, AND STONEH in an unpublished paper apply ideas that they have
ulled combinatorial programming.™ To illustrate their method they
presenit & 13-city problem. It was solved in 8 man-days. We have solved
heir problem by hand in about 33 hours. Eastaan,® ip an unpublished
loctoral thesis and Iaborstory report, presents a method of eolution and
eml variations on it. His work and ours contain strong similarities.
vever, to use our terminology, his ways of choosing branches and of

T
T

sim Sy

e W g e

e

x

974 John D. C. Litde, ot o,

calculating bounds are different from ours. He basieally solves a sequene
of assignment problems that give his bounds. We have a simpler method,
and for branching we use a device with quite a different motivation. The
biggest problem Eastman solves is 10 cities and he gives no computation
times, 50 that effective comparisons are difficult to make.

Most published problems are symmetric, i.e., the distance from city
to city 7 is the same as from j to . The algorithm to be presented alw
works for asymmetric problems; in fact, it seems to work better. Asym.
metric problems arise in various applications. As an example from pm.
duction scheduling, suppose that there is a production cycle of some time

period, during which an assembly line must produce each of n different .

models. The cost of switching from model 7 to model 7 i8 ¢;;. 'What order
of producing models minimizes total setup cost? This is & traveling salex
man problem in which it would not necessarily be expected that ¢:;=c¢;;

To summarize, 13 cities is the largest problem which we know about
that has been solved by & general method which guarantees optimality and
which can reasonably be programmed for a computer. Cur method ap-
preciably increases this number. However, the time required increases at
least exponentially with the number of cities and eventually, of cours.
becomes prohibitive. Detailed results are given below.,

THE ALGORITHM

TaE Basic method will be to break up the set of all tours into smaller and
smaller subgets and to calculate for each of them a lower bound on the ros
(length) of the best tour therein. The bounds guide the partitioning of the
subsets and eventually identify an optimal tour—when a subset is foun
that contains a single tour whose cost is less than or equal to the lower
bounds for all other subsets, that tour is optimal.

The subsets of tours are conveniently represented as the nodes of a
tree and the process of partitioning as a branching of the tree. Henee wr
have called the method ‘branch and bound.’

The algorithm will simultaneously be explained and illustrated by =
numerical example. The explanation does not require reference to thr
example, however, for those readers who wish to skip it.

Notation
The costs of the traveling salesman problem form a matrix. Let t
cities be indexed by ¢=1, - -+, n. The entry in row ¢ and column j of t’

matrix is the cost for going from city ¢ to city . Let

(' =[¢(%,5})= cost matrix.

C will start out as the original eost matrix of the problem but will under:
various transformations as the algorithm proceeds.

Travelin,
A tour, ¢, can be represented

t={(a,0)(

which form a circuit going to
represents an are or leg of the tr
i« the sum of the matrix eleme:
at):

z(t)=

Notice that that { always picks
m each column. Also, let

X,Y,¥ =nodes of the tree;
w(X) =a lower bound on 1
for i a tour of X;
2o = the cost of the best |

Lower Bounds

A useful concept in construc
If 2 constant, k, i3 subtracted fr
the cost of any tour under the
This i8 because every tour mu
that row. The relative costs o
any tour optimal under the old

The process of subtracting
vlement in the row will be call
negative elements and at least
valled a reduced mafriz and
rows and columns., If 2(t) is
eduction, z(¢) the cost unde
~onstants used in making the n

2

“mce a reduced matrix contai
« lower bound on the cost of ¢

Consider then the 6-city p
matrix by rows, then columns
luction is 48 so0 that z(¢) =48

. firanching

The splitting of the sct of
+nted by the branching of a ¢
“uining ‘all tours’ is self-expla
I tours which inefude the cit

D. C. Litile, et ol.

from ours. He basically solves a sequence
ve his bounds. We have a simpler method.
ice with quite a different motivation. The
3 ig 10 cities and he gives no computation
sons are difficult to make.

re symmetric, i.e., the distance from city ¢
i to . The algorithm to be presented alw
s; in fact, it seems to work better. Asym.
us applications. As an example from pro-
at there is a production cyele of some time
nbly line must produce each of n different
: from model £ to model j is ¢;;. What order
. total setup cost? This is a traveling sales.
[not necessarily be expected that ci;=r;.
the largest problem which we know about
ral method which guarantees optimality and
rammed for a computer. Our method ap-
.r. However, the time required increases at
number of cities and eventually, of course,
1 results are given below,

iE ALGORITHM

nreak up the set of all tours into smaller and
.¢ for each of them a lower bound on the cost
in. The bounds guide the partitioning of the
{y an optimal tour—when a subset is found
hose cost is less than or equal to the lower
hat tour is optimal.

conveniently represented ss the nodes of a
ioning a8 & branching of the tree. Hence we
*h and bound.’

taneously be explained and illustrated by &
planstion does not require reference io the
-eaders who wish to skip it.

¢ salesman problem form a matrix. Let the
,n. The entry in row ¢ and oolumn j of the
rom city ¢ to city j. Let

le(i,5)]=cost matrix.

\ cost matrix of the problem but will undergo
1e algorithm proceeds.

Traveling Salesman Problem 975

A tour, i, can be represented as a set of n ordered city pairs, e.g,
{= [{ihif) ("111'3) s (in—l; .I) (imil)],

which form a circuit going to each city once and only once. Each (Z)
represents an arc or leg of the trip. The cost of a tour, ¢, under a matrix, C,
is the sum of the matrix elements picked out by ¢ and will be denoted by
()
2() = 2 0.5 in e €(85)-
otice that that ¢ always picks out one and only one cost in each row and
in each column. Also, let

X,Y,¥ =nodes of the tree; '

w(X) =a lower bound on the cost of the tours of X, le, () zw(X)

for ¢ & tour of X;
2 = the cost of the best tour found so far in the algorithm.

Lower Bounds

A useful concept in constructing lower bounds will be that of reduction.
If a constant, A, is subtracted from each element of & row of the cost matrix,
the cost of any tour under the new matrix is h less than under the old.
This is because every tour must contain one and only one element from
that row. The relative costs of all tours are unchanged, however, and 50
any tour optimal under the old will be optimal under the new.

The process of subtracting the smallest element of a row from each
element, in the row will be called reducing the row. A matrix with non-
negative elements and ab least one zero in each row and column will be
called & reduced mairiz and may be obtained, for example, by reducing
rows and columps. If 2(¢) is the cost of a tour ¢ under a matrix before
reduction, z(¢) the cost under the matrix afterward, and A the sum of
constants used in making the reduction, then

() =h+a(t). (1)

il

Since & reduced matrix contains only nonnegative elements, k constitutes
2 lower bound on the eost of ¢ under the old matrix.
Consider then the 6-city problem shown in Fig. 1. Reduction of the

matrix by rows, then columns, gives the matrix of Fig. 2. The total re-
duetion is 48 so that 2(¢) 248 for all ¢.

Branching

The splitting of the set of all tours into disjoint subsets will be repre-
gented by the branching of a tree, as lustrated in Fig. 3. The node con-
taining ‘all tours’ iz self-explanatory.
all tours which include the city pair {(#.7).

The node containing ¢,j represents
The node containing 4,7 repre-

R ok

976 Jokn D. C. Linde, ¢t ol.

To :
I 2 3 4 5
| joo [27]|43|16[30(26

2|70 [16] 1 |30]|25
3[20|13 |0 |35]5
421 |16({25|00 |18 |18
5|12 |146|27 48[| 5
" 6l23|5|5(9|5 |

Fig. 1. Cost matrix for & 6-city problem. A typical tour might be
t={(1,3}(3,2)(2,5){5,6)(6,4) (4,1)], which has the sost (length) z=434+13+
30+549421=121.

sents all tours that donol. At the i, node there is another branching. The
node containing k] represents all tours that include (i7) but not (kj),
whereas k,! represents all tours that include both (44) and (k4). In
general, by tracing from a node, X, back to the start, we can pick up which
city pairs are committed to appear in the tours of X and which are for-
bidden from appearing. If the branching process is carried far enough,
some node will eventually represent a single tour. Notice that at any stage

I 2 3 4 5 &
vl 1]27|,®lha] 0
2| 1| @|i15],929|24
3 /18] 13/ 0|35 5 |@
419, slw|2|2
5|2|4lje2fa3| o | ®
6I30©0@40©C0

Fig. 2. Cost matrix after reducing rows and columns. Cireled numbers
are values of a(r,;).

i Stan . ol

Trlnlhls

of the process, the union of the sets
set of all tours.

When a node X branches int

§ newly committed eity pair will fre

the newly forbidden city pair 7.

Flow Chart

The workings of the algorithm 1
flow chart of Fig. 4.

all
tours

Fig. 3. §

Boz 1 starts the calculstion by
problem into C, setting X =1 to rep
the cost of the best tour so far to in

Bozx 2 reduces the matrix and lak

Box 8 selects (k,l), the city pair
The goal in doing this is to split th
‘|uite likely to include the best tour
yuite unlikely to include it. Possib
those involving an (£,7) for which ¢

Consider therefore the costs for
possible tours for ¥. Since city ¢ 1
tours must incur at least the cost of 1
*(1,7). Since city j must connect :
lrast the cost of the smallest elere:
the sum of these two costs 6(i,7).
bair that gives the largest #(17).
such that c(i,7) =0, since otherwist

Traveling Salesman Problem 977

the union of the sets represented by the terminal nodes 18 the
; urs.

When & node X branches into gwo further nodes, the node with the
ewly €0 tted city pair will frequently be called Y and the node with

e newWy forbidden eity pair Y.

flow Chart
The workings of the algorithm will be explained by tracing through the

gow chart of Fig. 4.

A typical tour might be a o
soet (length) z=43+13+

iz another branching. The

nclude (4,7) bub not (&I},

both (%.7) and (ki). In

stnrt,wecanpickupw

irsoiXandwh.icharefor-
ooees i carried far enough, | Fig. 3. Start of tree-
O otice that 8t 80y St58° 1 By 1 starts the calculstol by putting the original cost ALK of the
5 6 problem into C, setiing X=1to represent the node, ‘all towrs,’ and getting
3 thecostofthebest tour so far 10 jnfinity.
14110 Box £ the matrix mdlabeISnodeXwith italowerboundw(X).
Boz 8 selectd (k,D), the city pair on which to base the next pranching.
29|24 Thegoalindoingt.hisistospﬁt.thetoursofXintoasubeet(If)t,hatis
quite likely to include the best tour of the node and another (Y) is
8 ® quite unlikely to include it. Possible low cost towrs to consider for Y are
210 those involving an (i,4) for which e{4,))=0
2|2 Congider therefore the coets for tours that do not contain (.4)s ie.,
et B 1e tours for ¥. Since city § must be reached from somé city, these
© tours must incur ab theoostofthesmﬂlest elementinrowi,excluding
0| R «(i,9)- Since city J must connect to s0me city, the tours must incur at
. ®l o ¥ iast the cost of the smallest clement in column j, excluding e(i.4)-
) l R e sum of thess two costs 8(ij). We shall choose (1) to be that city
B peir that givee the largest 8(i:7)- [This amounts o 2 gearch over %))
sse 8(ij) =0 Notice that, if c(ig) 18

d columns. Cireled numbers

D) such that c(3,)=0; ®

START
[

!]

C — original cost matrix
X w1 (="all rours*’)

- o

2

Raduce C. Label X with wi{X)

= sum of reducing constants

> |
-

John D. C. Listle, et «l.

7

Salect next X fram which o bronc

as the multi-tour tefmind node
which hos smallsst w{X).

3

Choose {k,[) for next tres axten-
sion sa that Gk}
= Max 9(i,j) where 8y =

smallest cost in row i, omitting

oli, i)' T |smollast costin
column j, emitting (i, i) .

4

Mfl a branch fram X ta i the
k! nade,- Label Y by w(Y) =
wX) o6k, £

5

Make a bronch frem X to Y, the
k,l node. Delete row k and

column £ in C. Find p = starting

city and m = ending city of the
poth containing {kj) among path
9 ted by the mitted city
pairs of Y. Set c[m,p} = @
Rediuce C. Label Y by wi(Y} =
wiX) t (sum of reducing con=
stantsh

Yes

]

. Ho FINISH

EDotsX=‘fofboxS?]

r 3

No
10

Sat up C for X:

(1) € +—originol cost matrix

{2 Reed pairs {i, j} commited
to ba In tours of X,
Find g =Zcli, |

{3} For wach such (i, i} delrte
row i and column j of G
For aach path cmang the
{i, i} find srarting city p and
ending city m ond set
e(m, p} =@, For each k.l
prohibited fram tours of X,
sot ok, [) = @,

{4) Reduce C.

{5} Labei X with WX} =g +

{sum of reducing constantsh

IilC»ﬂw?xa Yes

&

— Y}
o Sove toyr

®

Fig. 4. Flow chart of the algorithm.

Truvells

set to infinity and then row § s
ducing constants is 8(1,7).

For the example, the 8(t,j)
the cells of the zeros of Fig. 2.
{1,4) will be the first city pair

Boz 4 extends the tree fro
w(¥)=w(X)+0(kl). In the
is so labeled in Fig. 5b.

Boz 6 sets up ¥. Sinee il
tours, row k and column [are
Next, notice that (£,0) will be
the city pairs that have been
path starts at city p and ends
The connecting of m to p shou
(a circuit with less than n eit
Therefore, set c(m,p) = =

After these modifications (
places: row m, column p, any
rows that had a zero in colur
some zero that cannot have be
reducing constants. The lowe

wi

The algorithm operates so t
in Box 3 with & matrix and
relation. If { is any tour of J
the city pairs of ¢ left after re
and z (%) the cost of ¢, under (

2t

This expression is true for th
hound w{ X;) and matrix ¢, of
w(Xy) and reduced matrix ("
out of X;.} It will be shown
true for X,.

The operations on € to ge
of the form: delete row 7 and ¢«
of X,, insert various infinities,
form

w(X:)=

where the summation is over t
and A is the sum of the reduch

7

am which 13 branch

r terminol nade
rest owi X}

s Ye
Ry

o
FINISH

of hox 57 l

| cost mairix
(i, i} commited
re af Xe
s(iy i}
seh {i, §) delete
olumn j of C.
ath omong the
‘arting city p and
m and set

For each k.|

from tours of X,
- a:.

th w{X) =g i
ucing constonts),

s and & is the sum of the reducing constants. But consider any £ in X, (and

Traveling Salcsman Problem 979

«t to infinity and then row ¢ and column ; are reduced, the sum of the re-
ieing constants is 8(%,7}.

For the example, the ¢(3,j) values are written in small circles placed in
4o cells of the zeros of Fig. 2. The largest 8 is #(1,4)=10+0=10 and so
1,4) will be the first city pair used for branching.

Boz 4 extends the tree from node X to ¥. As will be shown below,
{¥y=w(X)4+8(k!l). In the example w(¥)=10+48=358 and the node
- 50 labeled in Fig. 5b.

Bor 5 sets up Y. Bince the city pair (L,I) is now committed to the
ours, row k and column ! are no longer needed and are deleted irom C.
Next, notice that (k) will be part of some connected path generated by
he city pairs that have been committed to the tours of ¥, Suppose the
path starts at city p and ends at city m. {Possibly p=4¥ or m=1{ or bath.)
The connecting of m to p should be forbidden for it would create a subtour
a circuit with less than n cities) and no subtour can be part of a tour.

Therefore, set ¢(m,p)= =.

After these modifications € can perhaps be reduced in the following
places: row m, column p, any columns that had a zero in row &, and any

‘rows that had a zero in column I. All other rows and c¢olumns contain
" sme zero that cannot have been disturbed. Let & be the sum of the new
reducing constants. The lower bound for ¥ will now be shown to be

w(Y)=w(X)+h.

The algorithm operates so that the investigation of each node, X, starts

in Box 3 with a matrix ¢ and a lower bound w(X) that stand in a special

_relation. If ¢ is any tour of X, z(1) its cost under the original matirx, 4,

1the city pairs of ¢ left after removing those committed to the tours of X,
“and z (4} the cost of 4, under €, then it will be shown that

5 () =w(X)Fuh). (2)

; This expression i true for the first node by (1). Suppose that from a
bound w{X;) and matrix €, of a node X, the algorithm construets a bound
9(X;) and reduced matrix C, for a node X,. (X, will be on some branch
cout of Xi.) It will be shown that, if (2) i8 true for X,, (2) will also be
i true for X:.
The cperations on C; to get (s (shown in Boxes 5 and 10} are always
" of the form: delete row ¢ and eolumn j for each (1,7) committed to the tours
" of X,, insert various infinities, reduce. The lower bound is always of the
* form
w(Xs) =w(X)+ T a(i)+h, (3)

+ where the summation is over the city pairs committed in X, but not in X

i
¥
i
t

980 John D. C. Little, et ol.

therefore in X;). If we let z:(ty) be the cost of the uncommitted city pairs
of X, under C; and z:(&) be the cost of the uncommitted city pairs of X,

under Cs,
()= 2 aliy)+h+alh),

or using (2), assumed true for X,
2() =w(Xy)+ 2 er(inf) Hh+a(t)
=w(Xz} +z(h),
80 that (2) is true for X, as was to be shown.
y
I 2 3] 5 © 48
oot H2F 1410 @
0 t4 28 (23 :
21+ [® 4519 |20 24| 58
3|i5|13|0|[36]|5 |0 43
l,4
dlw|Of9j@|2}2
512 |a1|22]4B | | O
6(13|01014 |0 |
(a) (b)

Fig. 5. (a) Matrix after deletion of row 1 and eolumn 4. {b) First branching.

Equation (3) is used to calculate the lower bounds in Boxes 4, 5, and 10. ¢
That these lower bounds are valid is established by (2) and the non- |
negativity of the elements of C.

For the example, the matrix of Fig. 5 shows the deletion of row 1 and
column 4. The connected path containing (1,4) is (1,4) itself, so that
(m,p)=(4,1) and we set ¢(4,1)= «. Looking for reductions, we find that
row 2 can be reduced by 1. Then w(Y)=48+1=49as shown.

1t may be worth giving another example of finding (m,p). Supposeth
committed city pairs were (2,1)(1,4)(4,3), and {(5,6) and (k1) were (14"
Then the connected path containing (k,) would start at 2 and end at 3 t
yield (m,p)=(3,2).

Box 6 checks to see whether a single tour node is near.

Box 7 selects the next node for branching. There are & number of wa
the choice might be made. The way shown here is to pick the node wit!

the smallest lower bound. This leads to the fewest nodes in the tree.

Boz 8 checks to see whether the algorithm is finished—whether 1!+

al,

f the uneommitted eity pajr.
ncommitted city pairs of y

48

(b)

mn 4. {(b) First branching,

ndg in Boxes 4, 5, and 10,
hed by (2) and the non-

+ the deletion of row | and
A4) I8 (1,4) itself, so that
or reductions, we find that
=49 8s shown,

nding (m,p). Suppose the
.5,8) and (k1) were (1,4).
slart at 2 and end at 3 to

3 i pegy,
here are 4 number of ways
© 18 to pick the node with
est nodes in the tree.

is finished—~—whether the

Fraveling Selesman Probiem

Fig. 6. Final tree.

981

optimal
tour

ER R s St)

p————

982 Johr D. C. Little, ot ol.

besttoursofarhasacostlessthsnorequaltothelowerboundson.u
terminal nodes of the tree.

Boz 9 is a time saver. Most branching is from ¥ podes, e, to the
right. Such branching involves crossing out rows and columns and other
manipulations that can be done on the matrix left over from the previous
branching, When this case occurs, Box 9 detects it and the algorithm
returns directly to Box 3.

Boz 10 takes up the alternate case of setting up an appropriate lower
bound and reduced matrix for an arbitrary X. Starting from the original
cost matrix, rows and columns are deleted for city pairs committed to the
tours of X, infinities are placed to block subtours and at forbidden city
pairs, and the resulting matrix is reduced, The lower bound ean be com.
puted from (3) by thinking of X; in (3) as a starting node with w(X,)=0
and matrix equal the original cost matrix. Since different ways of reducing
a matrix may lead to different sums for the reducing constants, the recaleu.
lated w(X) is substituted for the former one.

Bozes 11 and 12 finish up = single tour node. By the time (is 8 2X*
matrix, there are only two feasible (3,7) left and they complete a tour.
Since the box is entered with a reduced matrix, the costs of the final com
mitments are zero, and z=w(Y) by (2). If z<z, the new tour is the best

yet and is read off the tree to be saved.

Returning to the example, Box 7 picks 1,4 as the second node for branel.
ing and, since this is a branching to the right, C is already available in r-
duced form. As shownin F ig. 6, the next branching is on the basis of (21
with (m,p)=(4,2). Next, we go to the right from 2,1 on the basis of (5i-
with (m,p)=(8,5) and then from 5,6 on the basisof (3,5) with (m,p)=(63:.
At this point €' is a 2X2 matrix, and we jump to Box 11 to finish the tour.
We find 2= 83, which is stored as z but, on returning to Boxes 7 and .
we see that 1.4 has a lower bound of 58. To set up this node we go through
Box 10, After the next branching, however, Box 8 shows that the problem
is finished.

Discussion

At this point, let us stand back and review the general motivation of the
algorithm. 1t proceeds by branching, crossing out a row and columu.
blocking a subtour, reducing the cost matrix to set a lower bound and ti
repeating. Although it is clear that the optimal solution will eventually I~

found, why should these particular steps be expected to be efficient? I irst
of all, the reduetion procedure is an efficient way of building up lower boun-
and also of evoking likely city pairs to put into the tour. Branching is d-
so &s to maximize the lower bound on the %] node without worrying =
much about the k,/ node. The reasoning here is that the k,I node represen™

a smaller problem,
putting the emphas
optimal tours are n
Insight into the
the erossing out of 3
subtour creates a n
Using the notation ¢
into a single city,
e(m';m')= o. The
restrictions into wh
plished rather succe:
Finally, uniike :
here has an extensiv
any stage be conve
stage. A trial bran
is investigated, Fo
in how the next brs
leads to the ultimat
there are just too m
is likely to lead to 2

A VARIETY of embel
tecord severa] that u
caleulations. For t

o to the Right
It is computatio

it becomes ohvigus!
from the &,/ node u

known tour. Asa:
there will be substar
of Box 10.

One consequence
reetly to & tour at
efore optimality is
able a lower bound
deciding whether th

Throw Awey the

A large problem
pacity of high <

lower bounds on a)j

Y nodes, e, to thee
t eolumns aaed othyer
er from the previon.
t aid the algoritha,

i appropriate lower
g from the origingg
its committed to the
Wl at forbidden city
-~ bound can e eom
node with w{ X, =0
ent ways of reduchy
mstants, the reealey-

the time €' s a 2x2
ey complete a tour,
sts of the final com.
new tour is the bhest

mnd node for branch-
ady available in re.
on the basis of (2,11
on the basig of {5,fi)
) with (m,p)=(6,3).
i1 to finish the tour.
1 t0 Boxes 7 and 8,
node we go through
ws thas the problem

al motivation of the
v row and column,
wer bound and then
0 will eventually be
be efficient? First
ing up lower bounds
Branching is done
thout worrying too
sk, node represents

Traveling Salesman Problem 983

3 smaller problem, one with the ith row and ith column crossed out. By
pusting the emphasis on a large lower bound for the larger problem, non-
optimad tours are ruled out fasier.

Insight into the operation of the algorithm is grined by observing that
the erossing out of a row and column and the blocking of the corresponding
subtour creates a new traveling salesman problem having one fewer city.
Using the notation of Box 5, we can think of city m and city p as coalesced
into a single city, say, m’. Setting c(m,p)= = is the same as setting
om’;m’y= . The blocking of subtours is & way of introducing the tour
restrictions into what is otherwise an assignment problem and is accom-
plished rather successfuily by the algorithm.

Finally, unlike most mathematical programming algorithms, the one
bere has an extensive memory. It is not required that a trial solution at
any stage be converted into a new and better trial solution at the next
stage. A trial branch ean be dropped for a moment while another branch
is investigated. For this reason there is considerable room for experiment
in how the next branch is chosen, On the other hand the same property

i leads to the ultimate demise of the computation—for n sufficiently large
- there are just too many branches to investigate and a small increase in n
i is likely to lead to a large number of new nodes that require investigation.

MODIFICATIONS

A vaRIETY of embellishments on the basic method can be proposed. We
; tecord several that are incorporated in the computer program used in Iater
1 ealculations. For the program listing itself (see SwrENEY.)

i Go to the Right

¢ It is computationally advaniageous to keep branching to the right until
i it becomes obviously unwise. Specifically, the program always branches
~from the %! node unless its lower bound exceeds or equals the cost of a
! known tour. As a result a few extra nodes may be examined, but usually
; there will be substantial reduction in the number of time-consuming setups
¢ of Box 10.

; One consequence of the modification is that the caleulation goes di-
1 rectly to a tour at the beginning. Then, if the calculations are stopped
 before optimality is proven, s good tour is available. There is also avail-
able & lower bound on the optimal tour. The bound may be valuable in

} deciding whether the tour is sufficiently good for some practical purpose.

Throw Awey the Tree

A large problem may involve thousands of nodes and exceed the ca-
pacity of high-speed storage. Storage can be saved, although usually at

s - - -

o

984 John D, €. Litde, 1 al.

the expense of time, by noting that, at any point in the computation, the
coatofthebesttou.rsofaraetsanupperboundontheeostofanoptimal
tour. Let the calculation proceed by branching to the right (storing each
terminal node) until a single tour is found with some coet, 88y, z. Nor.
mally, one would next find the terminal node with the smallest lower
bound and branch from there. Instead, work back through the termina)
nodes, starting from the single tour, and discard nodes from storage until
one is found with a lower bound less than zo. Then, branch again to the
rightall the way to a single tour or until the lower bound on some right-hand
node builds to z,. (If the branch goes to the end, a better tour may be
found and 2, assigned a new, lower value.) Repeat the procedure: again
work up the branch, discarding terminal nodes with bounds equal or
greater than z until the first one smaller is found; again branch {o the
right, ete.

Theeﬂectofthepmcedumisth&tveryfewnodesneedbekeptinston@
—something on the order of a few n. These form an orderly sequence
stretching from the current operating node direetly back to the terminal
node on the leftmost branch out of ‘all tours.’

Ag an illustration, consider the problem and tree of Fig, 6. Th_g com-
putation would proceed by laying out in storage the nodes 4,1;21; 5,6; and
35. At the next step we find a tour with 2= 63 and the obviously useless
node 4,3. The tour is stored separately from the tree. Working up the
branch, first 35 is discarded, then 56 sad 21, but 14 has s bound less
than z. Therefore, branching begins again from there. A node 6,3 is
stored and then we find the node to the right has a bound equal (z) zy and may
be discarded. Working back up the tree again, 83 is discarded and, sinee
that was the only remaining terminal node, we are finished.

The procedure saves storage but sometimes increases computation time.
If the first run to the right turns up a rather poor tour, ie., large z, the
criterion for throwing away nodes is too stiff. The caleulation is foreed to
branch out from many nodes whose lower bounds actually exceed the cost
of the optimal tour. The original method would never do this for it would
never explore such nodes until it had finished exploring every node with 1
smaller bound. In the process, the optimal tour would be uncovered and
#o the nodes with larger bounds would never be examined.

Taking Advantage of Symmetry

If the traveling salesman problem is symmetric and ¢ is any tour.
another tour with the same cost is obtained by traversing the cireuit ir? the
reverse direction. Probably the most promising way to handle this iz 1
treat the city pair (ij) as not being ordered. This leads naturally to s
new and somewhat more powerful bounding procedure. Although ti-

Tren

basic ideas are not ¢
So far, we have not done j,
There is another way t

! easy to incorporate into our

by modifying the nodes alo
the nodes with no city pairs
such a node, X, branches in
(k,1} forbidden. The revers
not be in ¥ for the presence

© tour. Buch of the reverse {,

them by setting c(lk)= «
Thus, a reverse tour is proh
the extent of having one con
A Computational Aid
In both hand and machi
first finding, for each row & a
a(k)=the sec
B(1) = the sec

! Then 8(k,0}) =a(k)+8(1) for
" computation the af{k) can be

matrix and the 8(I) as an exi
few problems, one can see thai
need to search the whole matr
and columns need be examine

Other Possibilities
If desired, the algorithm ¢

©lutions. Instead of discardi
until eventually all the termi

- single tours with 2=z. OQus

modification because in some
treat deal-—suppose the cost 1
Quite possibly, the average
the assignment problem for the
hy the cost of the optimal assig
'he assignment problem leave
'he larger lower bound with
‘tarting lower bound to the co:
g that may be expected. O
Ieen extensive and has vielded

- ‘peeded up, but some others w

t in the computation, the
on the cost of an optima)
to the right (storing esch
s0Imne COSt, BRY, 2p. Nor-

with the smallest lower
#ack through the terming]
nodes from storage untj)
'hen, branch again to the
bound on some right-hand
nd; a better tour may be
peat the procedure: again
¥ with bounds equal or
ind; again branch to the

les need be kept in storage
‘orm an orderly sequence
tly back to the terminal

tree of Fig, 6. The com-
he nodes 4,1;2,1; 5.6; and
and the obviously useless
1e tree. Working up the
but 1,4 has a bound less
m there. A node 63 is
bound equal (s) zp and may
6,3 is discarded and, since
re finighed. :

creases computsation time.

sor tour, i.e., large z), the |

‘he caleuiation is foreed to
& actually exceed the cost
never do this for it would
ploring every node with a
- would be uncovered and
examined.

wetric and ¢ is any tour,
-aversing the circuit in the
: way to handle this in to
This leads naturally to a

wovedure, Although the j

Traveling Salesman Problem 985
i asic ideas are not changed much, considerable reprogramming is required.
i 30 far, we have not done it.

; There is another way to take advaniage of symmetry and this one is
#5y to incorporafe into our program. All reverse tours can be prohibited
by modifying the nodes along the leftmost branch of the tree. These are
the nodes with no city pairs committed but some forbidden. Suppose that
wuieh & node, X, branches into nodes, ¥, with (4,) committed, and, ¥, with
k1) forbidden. The reverse tours of ¥ all have {I,k) in them. They can-
aot be in ¥ for the presence of both (k,I) and (Lk) is not possible in any
wur. Such of the reverse tours as were in X are in Y. We may prohibit
them by setting c(lk)= « [ss well as ¢(k,l)=] in any matrix for Y.
Thus, a reverse tour i3 prohibited as soon as the tour itself is identified to
the extent of having one committed city pair.

4 Computational Aid
In both hand and machine computation 8(k!) is easiest calculated by
first finding, for each row k and column I of the reduced matrix:

a{k) =the second smallest cost in row k.

A(1) =the second smallest cost in column 7,
Then (k) =a(k}+B(1) for any (k) which has ¢(£,!)=0. In a hand
eomputation the a(k) can be written as an extra column to the right of the
matrix and the B{1) as an extra row at the bottom. After working out 5
few problems, one can see that when the branching is to the right there is no
eed to search the whole matrix to reset « and 8, but that only certsin rows
and columna need be examined.

§ Other Possibilities

If deaired, the algorithm can be modified so as to generate all optimal
wlutions. Instead of discarding nodes with w{X)= z, split them up further
until eventually all the terminal nodes either have w>z or are optimal
gngle tours with z=2. Our computer program does not include this
modification because in some cases it will increase the computing time &
great deal—suppose the cost matrix were all geroes.

Quite poseibly, the average computing time can be decreased by solving
the agaignment problem for the original cost matrix and reducing the matrix
by the eost of the optimal assignment in Box 2. (Some methods for solving
the assignment problem leave it in reduced form.) The advantage lies in
the larger lower bound with which the problem starts. The closer the
starting lower bound to the cost of the optimal tour, the less is the branch-
ing that may be expected. Our exploration of the possible gains has not
been extensive and has yielded mixed results: Croes’ 20-city problem® was
mpeeded up, but some others were lengthened.

986 John D. C. Littde, o1 o,

lower bounds. Ag s simple example of another use of the method, if the
step of setting e(m,p)= » is omitted from the traveling salesman algorithm,
it solves the assignment problem, For another example, see Doig axp
Lanp, 001

MEAN AND STANDARD Deviation or T yox Ranpou Distamce Matycxs
(T=time in minutes used to solve Traveling Salesman Problem on IBM 7000.}

Number | N umber of | Mean Std. dev, Mean® Std. dev.w
of problems T T log T bgT -
Cities solved .
10 100 o.012 o.0a7 log o.015 bog 1.24 -
20 100 o.08¢ o.ob3 log ©.067 log .09
30 100 0.975 1.240 log 0.63 log 2.93
40 3 8.37 10,2 log 4.55 log 3.74

CALCULATIONS

PRrOBLEMS UP to 10 cities can be solved easily by hand. Although we have
made no special study of the time required for hand computations, our ex-
perience is that g 10-city problem can be solved in less than an hour.

The principal testing of the algorithm has been by machine on an IBM
7090. Two types of problems have been studied : (1) asymmetric distaner
matrices with elements consisting of uniformly distributed 3-digit randon
numbers and (2) various published problems and subproblems construetes!
therefrom by deleting cities. Most of the published problems have been
made up from road atlases or maps and are symmetrie,

The random distance matrices have the advantage of being statistically
well defined. Average computing times are displayed in Table I and curs»
(&) of Fig. 7. Problems up to 20 cities usually require only a few secoml-
The time grows exponentially, however, and by 40 cities is beginning to i
appreciable, averaging a little over 8 minutes. As a rule of thumb, addling
10 cities to the problem multiplies the time by a factor of 10,

COMPUTING TIME IN MINUTES

The standard de

problem size ng may
is skew, the simple gt
purpose of estimat;

|OO'E\F~

1o,

] T LI | f,
%
’e

.
.

—

’f
[! y
4 ; -

-“\

oY '
ot |
10 IS5

Fig. 7. Computin
random aumber dist:-
and Karp's 25-city I
Karp’s B-eity proble

ef al.

ad bound’ is more general thap
mal solution for a problem cay
lutions, splitting it up into dis.
objective function for each sub.
\llest lower bound, and so forth,
ticiency of the process, however,
=plit the subsets and to find the
wther use of the method, if the
he traveling salesman algorithm,
nother example, see Dota ann

Ranpou Distance MaTricEs
salesman Problem on IBM 7op0.)

v Mean's? Std. dev.®
g T bg T

: log o.015 log 1.24

§ log o.067 fog 2.09

> log 0.63 log 2.04

log 4.55 - log 3.74

icy on log normal probability paper and
+ which the computation was numerical.
¢ tail of the distribution—30 per cent of
t extra branching and thereby produced

ONS

sily by band. Although we have
d for hand ecomputations, our ex-
solved in less than an hour.

has been by machine on an IBM

studied: (1) asymmetric distance
ormly distributed 3-digit random
ems and subproblems constructed
he published problems have been
re symmetric,
1 advantage of being statistically
ire displayed in Table I and curve

isually require only a few seconds. *
and by 40 cities is beginning to be]

wites. As a rule of thumb, adding
me by a factor of 10.

Traveling Salesmen Problem 987

The standard deviation of these computing times also increases with
problem size as may be seen in Table I. Because the distribution of times

§ is skew, the simple standard deviation is a little misleading, at least for the

purpose of estimating the probability of a long calculation. Conse-

100.¢ ; I ; I] I]
- /e :
e . hn
[]
10.|— |
- * (o)]
C P(b)]
[2] i
w - f] 3
[*
-
r - . 7]
2 |
2 | \ '/. . 7
[i -1
£ F N\ ;
o - i
. I A i
Z . @ il
- B ;
2 i
o - i 1
g »
8 7
d B —
{ i
I_,‘ -
vy
i -
o1l f l I 1 I I

10} 5 20 25 30 35 40
NUMBER OF CITIES
Fig. 7. Computing times on IBM 7000. (a) Average times for 3 digit
random number distanee matrices. (b) Subproblems derived from Heid
and Karp’s 25-city problem. (¢) Bubproblema derived from Held and
Enarp's 48-city problem,

988 fohn D. C. Littie, et o,

quently, a log norma] distribution hag been fitted to the tail of the ¢

tribution. A yge
igma deviation on the high side jn a 40-city probla
would be a calculation that took (3.74)%(4.55) =

words, the probability that a 40-city random distance problem will reqy;
64 minutes or more ig estimated to be 0.023.

(b) and (c) of Fig. 7 show the results for sub
25- and 48-city problems of Held and Karp. ¥
took 4.7 minutes, We note that Held and
solution is correct,

probleme pulled out of

Karp’s conjectured op i

Facility. The time for the production runs was provided by I. B. M. op the

IBM 7090 at the M. I, T. Computation Center. We wish to acknowledge
the help of R. H. GowzaLEz for programming certain investigations. Hi
time was supported by the U. 8. Army Research Office (Durham),

1. M. M. Froob, “The Traveling Salesman Problem,” Opns. Res, 4, 61-75 (1956)

2 R A Gownzavrez, “Solution of the Traveling Salesman Problem by Dynamic
Programming on the Hypercube,” Interim Technical Report No. 18, OR
Center, M. T, T., 1982

3. M.Heto axp R, M. Kare, “A Dynamic Programming Approach to Sequencing
Problems " J. Soe. Indus. and Appl. Math, 19, 196-210 (1962).

£ M. J Rossman, R, J. TwERY, axp F. D, Brong, “A Solution to the Traveling

Problem by Combinatorial Pro, ing,” mimeographed,

5. M. J. Rossmax anp R,], TwERY, “Combinatoria} inrming,” presente
at 6th Annual ORSA meeting, May 1958, mimeographed. _

6 W. L. EasTvan, “Linear Programming with Pattern Constraints,” Ph.D. Jis
sertation, Harvard University, July 1958; 830, in augmented form: Report
No. BL-20 The Computation Laboratory, Harvard University, July 1955,

64 minutes,

The 25-city problem jisd .

7. G. B. Danrarg, D

Scale Traveling
8. G. A. Croxs, “A
' Res. 6, 791-814
t9. D. W. SweENET, ¢
[ing Salesman Pr
10. A. Dore anp A. [
' gramming Prob]

RUSLIRC il

al.

itted to the tail of the dis
would be, for example, ..
side in a 40-city problen
35) =64 minutes. In other
listance problem will require

i considerably longer than
To obtain a variety of proh-
ied problems and abstracted
_gities were taken, then the
; became excessive. Curves
bproblems pulled out of the |
" The 25-city problem itself -
Karp’s conjectured optimal

sen solved. Croes’™ 20-city
ht’s tour took 0.178 minutes.

NT

of the work was provided by
‘enter, the M. I. T. Computa.
rial Management Computing .

as provided by 1. B. M. on the j'
er. We wish to acknowledge
g certain investigations. His L
-ch Ofice {(Durham).

em,” Opns. Res. 4, 61-75 (1956).
Salesman Problem by Dynamic
1 Technical Report No. 18, OR

ramming Approach to Sequencing
th. 10, 196-210 (1962).

~NB, “A Solution to the Traveling
amming,” mimeographed.)
atorial Programming,” presented
i, mimeographed. :
Pattern Constraints,” Ph.D. dis-
also, in augmented form: Report
Harvard University, July 1958.

Traveling Salesman Problem 939

T @. B. Daxraig, D. R. Furkenrson, anp 8. M. Joransox, “Solution of a Large

Secale Traveling Salesman Problem,” Opns. Res. 2, 303—410 (1954).

i G. A. Croxs, “A Method for Solving Traveling Salesman Problems,” Opnas.

Res. 6, 791-814 (1958).

"9, D. W. SwrENEY, “The Exploration of a New Algerithm for Solving the Travel-

ing Salesman Probiem,” M.8. Thesis, M. I. T,, 1963.

;m. A. Doia AND A. H. Lano, “An Automatic Method of Solving Discrete Pro-

gramming Problems,” Econometrica 28, 497-520 (1960).

g s it et =1

